We are independent & ad-supported. We may earn a commission for purchases made through our links.
Advertiser Disclosure
Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.
How We Make Money
We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently of our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.
Engineering

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

What are MEMS?

Michael Anissimov
By
Updated: May 21, 2024
Views: 8,047
References
Share

MEMS stands for Micro Electro-Mechanical Systems, referring to functional machine systems with components measured in micrometers. MEMS is often viewed as a stepping stone between conventional macroscale machinery and futuristic nanomachinery. MEMS-precursors have been around for a while in the form of microelectronics, but these systems are purely electronic, incapable of processing or outputting anything but a series of electrical impulses. However, modern MEMS-fabrication techniques are largely based upon the same technology used to manufacture integrated circuits, that is, film-deposition techniques which employ photolithography.

Largely considered an enabling technology rather than an end in itself, the fabrication of MEMS is seen by engineers and technologists as another welcome advance in our ability to synthesize a wider range of physical structures designed to perform useful tasks. Most often mentioned in conjunction with MEMS is the idea of a "lab-on-a-chip," a device that processes tiny samples of a chemical and returns useful results. This could prove quite revolutionary in the area of medical diagnosis, where lab analysis results in added costs for medical coverage, delays in diagnosis and inconvenient paperwork.

MEMS are fabricated in one of two ways: either through surface micromachining, in which successive layers of material are deposited on a surface and then etched to shape, or through bulk micromachining, where the substrate itself is etched to produce a final product. Surface micromachining is most common because it builds on the advances of integrated circuits. Unique to MEMS, deposition techniques sometimes leave behind "sacrificial layers," layers of material meant to be dissolved and washed away at the end of the fabrication process, leaving a remaining structure. This process allows a MEMS device to have complex structure in 3 dimensions. Various microscale gears, pumps, sensors, pipes, and actuators have been fabricated and some of them are already integrated into everyday commercial products.

Examples of modern-day MEMS use include inkjet printers, accelerometers in automobiles, pressure sensors, high-precision optics, microfluidics, monitoring of individual neurons, control systems, and microscopy. There is currently no such thing as a productive microscale machine system on the order of productive macroscale assembly lines, but it seems that the invention of such a device is only a matter of time. The prospect of manufacturing with MEMS is exciting because arrays of such systems working in tangent could be substantially more productive than macroscale systems occupying the same volume and consuming the same amount of energy. One prominent limitation, however, would be that macroscale products built by microscale machine systems would need to be composed primarily of prefabricated microscale building blocks.

Share
All The Science is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.
Link to Sources
Michael Anissimov
By Michael Anissimov
Michael Anissimov is a dedicated All The Science contributor and brings his expertise in paleontology, physics, biology, astronomy, chemistry, and futurism to his articles. An avid blogger, Michael is deeply passionate about stem cell research, regenerative medicine, and life extension therapies. His professional experience includes work with the Methuselah Foundation, Singularity Institute for Artificial Intelligence, and Lifeboat Foundation, further showcasing his commitment to scientific advancement.
Discussion Comments
Michael Anissimov
Michael Anissimov
Michael Anissimov is a dedicated All The Science contributor and brings his expertise in paleontology, physics, biology...
Learn more
Share
https://www.allthescience.org/what-are-mems.htm
Copy this link
All The Science, in your inbox

Our latest articles, guides, and more, delivered daily.

All The Science, in your inbox

Our latest articles, guides, and more, delivered daily.