We are independent & ad-supported. We may earn a commission for purchases made through our links.
Advertiser Disclosure
Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.
How We Make Money
We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently of our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.

What are the Benefits of a Single Beam Spectrophotometer?

By Mal Baxter
Updated May 21, 2024
Our promise to you
All The Science is dedicated to creating trustworthy, high-quality content that always prioritizes transparency, integrity, and inclusivity above all else. Our ensure that our content creation and review process includes rigorous fact-checking, evidence-based, and continual updates to ensure accuracy and reliability.

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

Editorial Standards

At All The Science, we are committed to creating content that you can trust. Our editorial process is designed to ensure that every piece of content we publish is accurate, reliable, and informative.

Our team of experienced writers and editors follows a strict set of guidelines to ensure the highest quality content. We conduct thorough research, fact-check all information, and rely on credible sources to back up our claims. Our content is reviewed by subject-matter experts to ensure accuracy and clarity.

We believe in transparency and maintain editorial independence from our advertisers. Our team does not receive direct compensation from advertisers, allowing us to create unbiased content that prioritizes your interests.

A spectrophotometer is a photometer that detects the composition of substances. It does this by passing light through a substance and comparing before and after wavelength characteristics. Typically, a single beam spectrophotometer projects one beam of visible, near-ultraviolet (UV) or near-infrared (IR) light through liquids, solids, and gases, to analyze beam absorption and intensity changes. A double beam device compares the test beam with a second reference beam, and is often viewed as an easier, more stable improvement on the technology. The single beam variety, however, offers certain advantages; these include a simpler, more compact design, a larger dynamic range, and greater versatility.

Often resembling a desktop printer, the device is employed across industries and sciences. In typical spectrophotometers, light emits from a source such as tungsten filament, light-emitting diode, or xenon arc, depending on the required spectral traits. The beam hits a grating, where it reflects and disperses in another direction. This passes through an aperture and then the substance in question.

An electronic light detector captures the diffracted beam. The light energy is converted to electrical energy, and the resulting voltage fluctuations are analyzed on a computer. Computer software then translates the spectral wavelength characteristics. With a single beam spectrophotometer, the resulting spectral characteristics are compared to the initial beam, with changes and discrepancies detected. This allows the equipment to evaluate the composition of the substance.

Usually, a single beam spectrophotometer is sufficient for conducting analyses of the UV-visible light range. Formulas can be applied to selectable, single-wavelength absorptions to help calculate and infer compositions. Using a fixed or continuous light source, these devices may rely on simple solid state diode emitters and detectors to apply beams consistently for repeatable processes.

Fewer components mean single-beam devices are less costly to purchase or operate. They are less complex, so they may introduce fewer operational inconsistencies. Software assists in analysis and plotting resulting graphs; equipment is capable of rapid absorbency calculations and baseline correction of data.

Modern devices can determine substances from thousands of reference spectra stored in memory. Compact equipment can more easily be transported for field use and on-site applications, such as monitoring CO2 concentrations in greenhouses. Available in a variety of shapes and sizes, single beam spectrophotometer equipment requires less precision than double-beam types, and is not as sensitive to component flaws and internal dust buildup. Nor does it go through extra lengths of recombining double beams for detection.

With fewer moving parts to wear or get out of alignment, the single beam spectrophotometer is designed for increased stability and reliability. Technical innovations and techniques narrow the advantage of double beam models over this type. Additional developments in electronics and lamp technologies introduce more consistent single beam readings. Regular calibrations and proper equipment maintenance can ensure that single beam detection of a substance's spectral curve fingerprint can be reliably obtained.

All The Science is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.
Discussion Comments
All The Science, in your inbox

Our latest articles, guides, and more, delivered daily.

All The Science, in your inbox

Our latest articles, guides, and more, delivered daily.