We are independent & ad-supported. We may earn a commission for purchases made through our links.
Advertiser Disclosure
Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.
How We Make Money
We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently of our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.
Chemistry

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

What Is a Bomb Calorimeter?

By Vincent Summers
Updated: May 21, 2024
Views: 13,106
Share

The bomb calorimeter is a laboratory device that contains a “bomb,” or combustion chamber — usually constructed of non-reactive stainless steel — in which an organic compound is consumed by burning in oxygen. Included is a Dewar flask holding a specific amount of water in which the bomb is submersed. All of the heat (Q) generated by the combustion passes into the water, whose temperature (T) rises, and is very carefully measured. From the weights, temperatures and apparatus parameters, an accurate heat or “enthalpy” of combustion (ΔHc) may be determined. That value may be used to evaluate structural properties of the substance consumed.

Volume expansion is prevented by the rigid bomb design, so even though carbon dioxide and water vapor are produced by the combustion, it occurs at constant volume (V). Since dV=0 in the equation dW=P(dV), where work is W, there is no work performed. Also, as heat (Q) neither enters nor leaves — since everything is within the Dewar flask — the process is “adiabatic,” that is, dQ=0. This means ΔHc=CvΔT, where Cv is the heat capacity at constant volume. Data adjustment is needed due to the characteristics of the bomb calorimeter itself; there is the heat introduced by the burning of the fuse triggering combustion, and the fact that the bomb calorimeter functions only approximately adiabatically.

The bomb calorimeter has a number of applications, including both technical and industrial uses. Historically, in the laboratory, hydrocarbons and hydrocarbon derivatives have been burned in a bomb calorimeter with the goal of assigning bond energies. The device has also been used to derive theoretical stabilization energies, such as that of the pi-bond in aromatic compounds. The procedure may be demonstrated to — if not practiced by — students, as part of their undergraduate college instruction. Industrially, the bomb calorimeter is used in the testing of propellants and explosives, in the study of foods and metabolism, and in the evaluation of incineration and greenhouse gases.

Considering the example of one aromatic solvent, benzene (C6H6), there are six equivalent carbon-carbon bonds and six equivalent carbon-hydrogen bonds in each molecule. Without the concept of resonance, the carbon-carbon bonds in benzene should seemingly be different — there should be three double bonds and three single bonds. Benzene should be well represented by the fictitious chemical 1, 3, 5-cyclohexatriene. Through the use of a bomb calorimeter, however, the actual energy of the six uniform bonds gives an energy difference for benzene compared to the triene, of 36 kcal/mol or 151 kj/mol. This energy difference is benzene’s resonance stabilization energy.

Share
All The Science is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.
Discussion Comments
Share
https://www.allthescience.org/what-is-a-bomb-calorimeter.htm
Copy this link
All The Science, in your inbox

Our latest articles, guides, and more, delivered daily.

All The Science, in your inbox

Our latest articles, guides, and more, delivered daily.