We are independent & ad-supported. We may earn a commission for purchases made through our links.
Advertiser Disclosure
Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.
How We Make Money
We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently of our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.

What Is a Clathrate?

By Phil Riddel
Updated May 21, 2024
Our promise to you
All The Science is dedicated to creating trustworthy, high-quality content that always prioritizes transparency, integrity, and inclusivity above all else. Our ensure that our content creation and review process includes rigorous fact-checking, evidence-based, and continual updates to ensure accuracy and reliability.

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

Editorial Standards

At All The Science, we are committed to creating content that you can trust. Our editorial process is designed to ensure that every piece of content we publish is accurate, reliable, and informative.

Our team of experienced writers and editors follows a strict set of guidelines to ensure the highest quality content. We conduct thorough research, fact-check all information, and rely on credible sources to back up our claims. Our content is reviewed by subject-matter experts to ensure accuracy and clarity.

We believe in transparency and maintain editorial independence from our advertisers. Our team does not receive direct compensation from advertisers, allowing us to create unbiased content that prioritizes your interests.

A clathrate is a type of hydrate, or water compound, in which molecules of another substance are trapped within a cage-like structure composed of water molecules. The trapped molecule is usually a gas at normal pressure and temperature. Clathrates are ice-like solids that generally form at high pressures and low temperatures. Among the best known and most studied is a methane hydrate that occurs naturally in large deposits under the seabed in many parts of the world. These may be a potential source of energy, but there is also concern that a sudden release of large amounts of clathrate methane, perhaps prompted by global warming, could be disastrous.

The basic unit of most clathrates is a dodecahedron composed of 20 water molecules arranged to form 12 pentagonal faces, with a hollow center that can be occupied by a “guest molecule.” The structure is essentially held together by hydrogen bonds between the water molecules, but stabilized by the guest molecules. Since the dodecahedra cannot be packed together to fill all the available space, other polyhedral shapes also occur, so that a lattice is formed. Due to this variation in the cage shapes, and the fact that not all of the cages are necessarily occupied, clathrates cannot be given precise chemical formulae. Clathrate guest molecules can be hydrocarbon gases, such as methane or ethane, oxygen, nitrogen and carbon dioxide.

Methane hydrate is the clathrate compound that has generated the most interest. This compound occurs in large amounts in various locations around the edges of all the continents and in the permafrost regions of Siberia and Alaska. It has been estimated that these deposits constitute the largest reserve of hydrocarbons on the planet, far exceeding known reserves of coal, oil and natural gas. They are thought to have formed from methane produced by microbial activity in the anaerobic conditions in sediments just below the surface of the seafloor or on land where temperatures are sufficiently low. Even in tropical regions, seafloor temperatures are low enough for clathrate formation, where the pressure allows them to solidify at a few degrees above the freezing point.

Given the vast quantities of methane stored in these deposits, they have been considered as a potential source of natural gas. There may, however, be serious technical difficulties involved in its extraction that render it uneconomical. The Soviet Union made a number of unsuccessful attempts to extract gas from Siberian permafrost clathrate deposits during the 1960s and 1970s. There is also concern that the methods used to release the trapped gas may destabilize the deposits, which could potentially lead to subsidence and landslides.

Although clathrate deposits may represent a huge untapped energy resource, they could also pose a serious hazard. They are not stable outside the temperature and pressure conditions where they occur and there is concern that global warming may render them unstable. This poses a twofold threat.

Firstly, the melting of clathrate ice mixed with sediments at continental edges could result in massive landslides and consequent tsunamis. There is evidence from the relatively recent geological past that this may have happened off the coast of Norway. Secondly, methane is a potent “greenhouse” gas that traps heat in the atmosphere to an even greater extent than carbon dioxide. The sudden release of huge amounts of this gas could accelerate global warming, which might in turn cause further destabilization. Again, there is geological evidence that this may have happened in the past through natural processes and there is, as of 2011, particular concern about methane hydrate in permafrost deposits.

All The Science is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.
Discussion Comments
All The Science, in your inbox

Our latest articles, guides, and more, delivered daily.

All The Science, in your inbox

Our latest articles, guides, and more, delivered daily.