We are independent & ad-supported. We may earn a commission for purchases made through our links.
Advertiser Disclosure
Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.
How We Make Money
We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently of our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.

What is a Nanocomposite?

By D.R. Satori
Updated May 21, 2024
Our promise to you
All The Science is dedicated to creating trustworthy, high-quality content that always prioritizes transparency, integrity, and inclusivity above all else. Our ensure that our content creation and review process includes rigorous fact-checking, evidence-based, and continual updates to ensure accuracy and reliability.

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

Editorial Standards

At All The Science, we are committed to creating content that you can trust. Our editorial process is designed to ensure that every piece of content we publish is accurate, reliable, and informative.

Our team of experienced writers and editors follows a strict set of guidelines to ensure the highest quality content. We conduct thorough research, fact-check all information, and rely on credible sources to back up our claims. Our content is reviewed by subject-matter experts to ensure accuracy and clarity.

We believe in transparency and maintain editorial independence from our advertisers. Our team does not receive direct compensation from advertisers, allowing us to create unbiased content that prioritizes your interests.

A nanocomposite is a manmade material designed for enhanced performance in any number of unique applications: structural, functional or cosmetic. As with other composites, the nanocomposite includes a base medium, or matrix, composed of plastic, metal or ceramic combined with nanoparticles in suspension. The filler particles are much smaller than those in regular composites and are the size of large molecules, at least one hundred times smaller than the nucleus of a human egg cell.

The solid base medium of a nanocomposite starts as a liquid that can be sprayed onto a surface, extruded or injected into a mold. The filler particles function depending on their shape: round, like a ball, or long and thin, like a tube. Fullerenes, nanoparticles composed entirely of carbon atoms such as buckyballs or nanotubes, are orders of magnitude smaller than the carbon fibers or bead fillers found in regular composites. These fullerenes can carry any number of reactive molecules used in medicinal applications.

The smaller the size of the filler particles in suspension within the base medium, the greater the surface area available for interaction and the greater the potential to affect material properties. In the forming stages of nanocomposites, the base medium must flow easily into molds. With some applications, the filler must align with, and not disrupt, the flow in specific directions where strength or conductivity is required. Fillers with high length-to-width ratios align well in the flow of a liquid base that has yet to become solid.

The increased surface area of the smaller particles in nanocomposites forces their diffusion and compels them to be more evenly distributed, resulting in more consistent material properties. Clumping of nanoparticles during the flow and set of the base medium is caused by residual atomic charges or when branching particles tangle as they flow into one another. Unwanted and uneven clumping contributes to residual stresses in the material when the base medium becomes solid. Uneven nanoparticle distributions in critical locations could cause a design to fail, to stop functioning or to break. One method guaranteeing even distribution of particles is sonochemistry, in which — in the presence of ultrasound waves — bubbles are formed and collapse, dispersing nanoparticles more evenly.

Of the many applications for nanocomposite materials, a few of interest are electronic, optical and biomedical. Nanocomposites combining a polymer base medium with carbon nanotubes are used in the packaging of electronics that require housings to dissipate static electrical charges and thermal buildups. For optical transparency, nanoparticles of an optimal size will not scatter light but allow it to pass through while still adding strength to the material. In photovoltaics, the smaller the particles, the greater the solar absorption, resulting in a greater production of electricity. Nanoparticles in contact lenses, formed of a polymer base, change color depending on the amount of glucose in the patient’s tear fluid, indicating a diabetic’s need for insulin.

All The Science is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.
Discussion Comments
All The Science, in your inbox

Our latest articles, guides, and more, delivered daily.

All The Science, in your inbox

Our latest articles, guides, and more, delivered daily.