We are independent & ad-supported. We may earn a commission for purchases made through our links.
Advertiser Disclosure
Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.
How We Make Money
We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently of our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.

What is a Red Giant?

Niki Acker
By
Updated May 21, 2024
Our promise to you
All The Science is dedicated to creating trustworthy, high-quality content that always prioritizes transparency, integrity, and inclusivity above all else. Our ensure that our content creation and review process includes rigorous fact-checking, evidence-based, and continual updates to ensure accuracy and reliability.

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

Editorial Standards

At All The Science, we are committed to creating content that you can trust. Our editorial process is designed to ensure that every piece of content we publish is accurate, reliable, and informative.

Our team of experienced writers and editors follows a strict set of guidelines to ensure the highest quality content. We conduct thorough research, fact-check all information, and rely on credible sources to back up our claims. Our content is reviewed by subject-matter experts to ensure accuracy and clarity.

We believe in transparency and maintain editorial independence from our advertisers. Our team does not receive direct compensation from advertisers, allowing us to create unbiased content that prioritizes your interests.

A red giant is a type of star. Its name is rather self-explanatory: it is red because of its relatively low temperature, and it is one of the largest of all star types, 1,000 times as voluminous as our Sun. Betelgeuse, Antares, Aldebaran, and Arcturus are some well-known red giant stars visible from Earth with the naked eye.

A red giant is an aging star, and astrologists hypothesize that our Sun will become a red giant in about five billion years. Younger stars create energy through hydrogen fusion, which creates helium in the process, gradually causing the helium to hydrogen ratio inside the star to increase. Hydrogen is in the core of younger stars, but as a star ages and uses up its hydrogen store, the hydrogen becomes confined to an outer shell, while the core is only helium.

In this scenario, the helium core has no fuel to burn, as helium fusion is possible only at very high temperatures, over 100 million Kelvin. Therefore, the helium core begins to contract, while the hydrogen shell begins to expand. The star's luminosity, or brightness, increases by a factor of 1,000 to 10,000, while the hydrogen shell begins to burn cooler, taking on a red appearance and becoming a red giant. Red light is the lowest temperature of visible light, while hotter light appears white or blue.

When our Sun switches to shell hydrogen fusion and becomes a red giant, it will be the end of our solar system as we know it. A red giant in the place of our Sun would reach beyond Earth's current orbit. However, as part of the aging process, the Sun's gravitational pull will significantly weaken, causing all inner solar system planets except Mercury to drift away. While Earth itself may survive the event, the ecosystem we know will be destroyed as the Sun burns brighter, and Earth's atmosphere will more closely resemble that of present-day Venus — much too hot to support life as it is on today's Earth.

All The Science is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.
Niki Acker
By Niki Acker
"In addition to her role as a All The Science editor, Niki Foster is passionate about educating herself on a wide range of interesting and unusual topics to gather ideas for her own articles. A graduate of UCLA with a double major in Linguistics and Anthropology, Niki's diverse academic background and curiosity make her well-suited to create engaging content for WiseGeekreaders. "
Discussion Comments
Niki Acker
Niki Acker
"In addition to her role as a All The Science editor, Niki Foster is passionate about educating herself on a wide range...
Learn more
All The Science, in your inbox

Our latest articles, guides, and more, delivered daily.

All The Science, in your inbox

Our latest articles, guides, and more, delivered daily.