We are independent & ad-supported. We may earn a commission for purchases made through our links.
Advertiser Disclosure
Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.
How We Make Money
We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently of our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.
Biology

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

What is an Interneuron?

By Caitlin Kenney
Updated: May 21, 2024
Views: 108,976
References
Share

An interneuron, also known as an associated neuron, is a neuron, or nerve cell, located entirely within the central nervous system that conducts signals between other nerve cells. The central nervous system (CNS) consists of nerve cells within the brain and spinal cord, as opposed to the peripheral nervous system, which is all of the system that lies outside these areas. An interneuron acts as a “middle-man” between afferent, or sensory, neurons, which receive signals from the peripheral nervous system, and efferent, or motor, neurons, which transmit signals from the brain. It also connects to other interneurons, allowing them to communicate with one another.

Neuron Structure

A neuron is a type of cell specialized to receive and transmit nerve impulses. It has two types of extension that reach out from the main body, or soma. Dendrites are branched projections that usually receive information via electrochemical signals from the axon of another neuron; however, they can also send out certain types of signals. The axon is another, more cable-like, long extension from the soma that transfers information from the cell body. All nerve cells have one axon, a cell body, and one or more dendrites.

Interneurons are multipolar nerve cells, meaning that they have more than one dendrite. Although they are found throughout the brain, each one is confined to a particular region: they do not connect different parts of the brain to one another. They come in a much greater variety of forms than afferent or efferent nerve cells, but, as of 2013, there is no standard method of classifying them into types.

How Neurons Work

The signals brought to the central nervous system through afferent neurons relay information about sensations experienced on or within the body, such as visual and auditory stimuli, pressure and pain. Efferent neurons, conversely, send signals from the central nervous system out into the body. For example, if a person touches a hot stove with her hand, afferent nerve cells will carry sensory impulses to the central nervous system, registering pain. After processing the impulse, the central nervous system sends a message back to the body through efferent nerve cells to move the hand.

A nerve impulse occurs when a sensory receptor causes the normal negative electrical charge, or resting potential, of the nerve to become positive. This change in charge is called a depolarization. If the depolarization reaches a certain level, an action potential is created. This travels along the nerve cell to the synapse, or gap, between the end of the axon and another cell's dendrite. The positive charge at the end of the axon causes a series of reactions that allow “messenger” chemicals called neurotransmitters to enter the synapse and bind to receptors on the dendrite of the neighboring neuron. If this nerve cell is an interneuron, it will then have to decide what to do with the information received.

This kind of signal is called excitatory as it causes the receiving nerve cell to generate an impulse. It usually involves chemicals called glutamates. The opposite kind of signal is called inhibitory as it acts to suppress an impulse by generating a negative electrical charge in the receiving nerve. These signals generally involve the neurotransmitter gamma-amino butyric acid (GABA). The behavior of interneurons is most commonly inhibitory.

The Role of Interneurons

This type of nerve cell may be stimulated by an efferent or afferent neuron, or another interneuron. It may receive information from the body’s outside or inside environment and pass it along to the brain for further processing, or it may process the information itself and send a signal to a motor neuron to act. In the latter instance, it is considered the integration center, or the place in the central nervous system where information from the environment is processed and a decision is made on how to react.

In the previous example of someone touching a hot stove, the interneuron processes the information from the sensory nerve cell itself and allows a signal to pass to a motor neuron to take action. This is called a spinal reflex. Other signals, however, may require higher brain analysis and are sent from afferent neurons to one or more interneurons, which pass the impulse along to the brain. In this case, the brain is considered the integration center.

As of 2013, the various functions of interneurons are an area of active research and much is still to be learned. The inhibitory signals they produce may serve to modulate electrical stimuli between afferent and efferent nerve cells, but they also seem to play many other essential roles. Large assemblies of different types of these nerve cells appear to interact in complex ways that are important to higher brain functions such as memory, perception and emotion.

Share
All The Science is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.
Link to Sources

Related Articles

Discussion Comments
By anon993409 — On Nov 12, 2015

Strength training is associated with a decrease in intra-cortical inhibition.

By anon357729 — On Dec 06, 2013

What are the main functions of a interneuron?

By ShadowGenius — On Feb 04, 2011

Neurons are designed to react at extremely fast speeds to feelings which may be harmful. This is why a person will almost involuntarily jerk their hand away when touching a hot object. The speed at which this is done seems to defy time, because the body wants to save itself from any possible harm.

By helene55 — On Feb 03, 2011

If the neurons in the spinal cord or brain are damaged, it can affect all of the connecting neurons and dendrites, including interneurons. If this happens, the injured person will likely find that he or she cannot react to things the same way, especially excessive hot or cold; this can be especially true for victims of stroke.

Share
https://www.allthescience.org/what-is-an-interneuron.htm
Copy this link
All The Science, in your inbox

Our latest articles, guides, and more, delivered daily.

All The Science, in your inbox

Our latest articles, guides, and more, delivered daily.