We are independent & ad-supported. We may earn a commission for purchases made through our links.
Advertiser Disclosure
Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.
How We Make Money
We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently of our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.

What Is Exponential Smoothing?

By Matt Hubbard
Updated May 21, 2024
Our promise to you
All The Science is dedicated to creating trustworthy, high-quality content that always prioritizes transparency, integrity, and inclusivity above all else. Our ensure that our content creation and review process includes rigorous fact-checking, evidence-based, and continual updates to ensure accuracy and reliability.

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

Editorial Standards

At All The Science, we are committed to creating content that you can trust. Our editorial process is designed to ensure that every piece of content we publish is accurate, reliable, and informative.

Our team of experienced writers and editors follows a strict set of guidelines to ensure the highest quality content. We conduct thorough research, fact-check all information, and rely on credible sources to back up our claims. Our content is reviewed by subject-matter experts to ensure accuracy and clarity.

We believe in transparency and maintain editorial independence from our advertisers. Our team does not receive direct compensation from advertisers, allowing us to create unbiased content that prioritizes your interests.

Exponential smoothing is a technique for manipulating data from a series of chronological observations to downplay the effects of random variation. Mathematical modeling, the creation of a numerical simulation for a data set, often treats observed data as the sum of two or more components, one of which is random error, the differences between the observed value and the underlying true value. When properly applied, smoothing techniques minimize the effect of the random variation, making it easier to see the underlying phenomenon — a benefit both in presenting the data and in making forecasts of future values. They are referred to as "smoothing" techniques because they remove jagged ups and downs associated with random variation and leave behind a smoother line or curve when the data is graphed. The disadvantage of smoothing techniques is that when improperly used they can also smooth away important trends or cyclical changes within the data as well as the random variation, and thereby distort any predictions they offer.

The simplest smoothing technique is to take an average of past values. Unfortunately, this also completely obscures any trends, changes, or cycles within the data. More complicated averages eliminate some but not all of this obscuring and still tend to lag as forecasters, not responding to changes in trends until several observations after the trend has changed. Examples of this include a moving average that only uses the most recent observations or a weighted average that values some observations more than others. Exponential smoothing represents an attempt to improve upon these defects.

Simple exponential smoothing is the most basic form, using a simple recursive formula to transform the data. S1, the first smoothed point, is simply equal to O1, the first observed data. For each subsequent point, the smoothed point is an interpolation between the previous smoothed data and the current observation: Sn = aOn + (1-a)Sn-1. The constant "a" is known as the smoothing constant; it is valued between zero and one and determines how much weight is given to the raw data and how much to the smoothed data. Statistical analysis to minimize the random error generally determines the optimal value for a given series of data.

If the recursive formula for Sn is rewritten only in terms of the observed data, it yields the formula Sn = aOn + a(1-a)On-1 + a(1-a) 2On-2 + . . . revealing that the smoothed data is a weighted average of all the data with the weights varying exponentially in a geometric series. This is the source of the exponential in the phrase "exponential smoothing." The closer the value of "a" is to one, the more responsive to changes in trend the smoothed data will be, but at the expense of also being more subject to the random variation in the data.

The benefit of simple exponential smoothing is that it allows for a trend in how the smoothed data is changing. It does poorly, however, at separating changes in the trend from the random variations inherent to the data. For that reason, double and triple exponential smoothing are also used, introducing additional constants and more complicated recursions in order to account for trend and cyclical change in the data.

Unemployment data is an excellent example of data that benefits from triple exponential smoothing. Triple smoothing allows the unemployment data to be viewed as the sum of four factors: the unavoidable random error in collecting the data, a base level of unemployment, the cyclical seasonal variation that affects many industries, and a changing trend that reflects the health of the economy. By assigning smoothing constants to the base, the trend, and the seasonal variation, triple smoothing makes it easier for a layman to see how unemployment is varying over time. The choice of different constants will alter the appearance of the smoothed data, however, which is one of the reasons economists can sometimes differ greatly in their forecasts.

Exponential smoothing is one of many methods for mathematically altering data to make more sense of the phenomenon that generated the data. The computations can be performed on commonly available office software, so it is also an easily available technique. Properly used, it is an invaluable tool for presenting data and for making predictions. Improperly performed, it can potentially obscure important information along with the random variations, so care should be taken with smoothed data.

All The Science is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.
Discussion Comments
All The Science, in your inbox

Our latest articles, guides, and more, delivered daily.

All The Science, in your inbox

Our latest articles, guides, and more, delivered daily.