We are independent & ad-supported. We may earn a commission for purchases made through our links.
Advertiser Disclosure
Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.
How We Make Money
We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently of our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.

What is Genetic Variance?

Jessica Ellis
By
Updated May 21, 2024
Our promise to you
All The Science is dedicated to creating trustworthy, high-quality content that always prioritizes transparency, integrity, and inclusivity above all else. Our ensure that our content creation and review process includes rigorous fact-checking, evidence-based, and continual updates to ensure accuracy and reliability.

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

Editorial Standards

At All The Science, we are committed to creating content that you can trust. Our editorial process is designed to ensure that every piece of content we publish is accurate, reliable, and informative.

Our team of experienced writers and editors follows a strict set of guidelines to ensure the highest quality content. We conduct thorough research, fact-check all information, and rely on credible sources to back up our claims. Our content is reviewed by subject-matter experts to ensure accuracy and clarity.

We believe in transparency and maintain editorial independence from our advertisers. Our team does not receive direct compensation from advertisers, allowing us to create unbiased content that prioritizes your interests.

Genetic variance is the result of several factors, leading to the evolution of a species. It is influenced by several main criteria, including genetic mutation, the genetic elimination of recessive characteristics and addition of dominant ones, and the size of the available gene pool. Genetic variance can cause differences at an observable or phenotypic level in species, leading to explanations for things such as blood type, skin color and size.

In humans and similar organisms, the genetic code carries a pair of each type of gene. The two components, called alleles, may be identical or different from one another, and are often characterized as dominant or recessive. For instance, if a person has brown eyes, they have at least one brown-eye causing allele, because brown eye color is a dominant trait. Because blue eyes are a recessive trait, a blue-eyed person has identical blue-eye causing alleles.

While that seems somewhat straightforward, the science of genetic variance quickly becomes more complex. Some alleles are neither dominant nor recessive, and may combine to create a new hybrid in the next generation. In some flowers, crossbreeding a red flower and a white flower may result in a red or white flower, or it may result in a pink or striped hybrid. In cats, several different colored kittens may be born in the same litter, directly affected by genetic variance.

Variance can also be caused by gene mutation. If a parent's genes become altered by an exterior force, such as radiation or a virus, it can add a new element into the gene pool of the next generation. Mutations can be beneficial to the survival of the species, such as a color variance that causes a species to be harder for predators to see. In this case, the survival rate of creatures with the mutation may increase, causing them to eventually be the dominant faction of the population. Natural selection can also eliminate negative traits, by lowering the survival rate or shortening the life span of a mutated gene carrier.

The size of the gene pool can seriously affect genetic variance, preventing undesirable traits from being washed out of a community as those with similar genetic codes reproduce. A population forced to reproduce with close relatives can reduce the amount of genetic variance, often making recessive or undesirable characteristics grow over time, as carriers of a particular gene continue to breed. More than any social or cultural construct, it is for evolutionary purposes that it remains unwise to mate with close relatives.

Genetic variance is what allows for species adaptation over time. Whether through gene combinations in offspring or mutation, strong survival traits will tend to grow more dominant in a population. Alterations at the phenotype levels of physical traits, inherited behavior, or other observable characteristics can have an enormous affect on how a species survives in its environment. Generally, the wider the gene pool, the more successful the population, as genetic variance will weed out the poor survival traits and give dominance to the most successful.

All The Science is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.
Jessica Ellis
By Jessica Ellis
With a B.A. in theater from UCLA and a graduate degree in screenwriting from the American Film Institute, Jessica Ellis brings a unique perspective to her work as a writer for All The Science. While passionate about drama and film, Jessica enjoys learning and writing about a wide range of topics, creating content that is both informative and engaging for readers.
Discussion Comments
Jessica Ellis
Jessica Ellis
With a B.A. in theater from UCLA and a graduate degree in screenwriting from the American Film Institute, Jessica Ellis...
Learn more
All The Science, in your inbox

Our latest articles, guides, and more, delivered daily.

All The Science, in your inbox

Our latest articles, guides, and more, delivered daily.