We are independent & ad-supported. We may earn a commission for purchases made through our links.
Advertiser Disclosure
Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.
How We Make Money
We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently of our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.

What Is Neural Backpropagation?

By Sarah Parrish
Updated May 21, 2024
Our promise to you
All The Science is dedicated to creating trustworthy, high-quality content that always prioritizes transparency, integrity, and inclusivity above all else. Our ensure that our content creation and review process includes rigorous fact-checking, evidence-based, and continual updates to ensure accuracy and reliability.

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

Editorial Standards

At All The Science, we are committed to creating content that you can trust. Our editorial process is designed to ensure that every piece of content we publish is accurate, reliable, and informative.

Our team of experienced writers and editors follows a strict set of guidelines to ensure the highest quality content. We conduct thorough research, fact-check all information, and rely on credible sources to back up our claims. Our content is reviewed by subject-matter experts to ensure accuracy and clarity.

We believe in transparency and maintain editorial independence from our advertisers. Our team does not receive direct compensation from advertisers, allowing us to create unbiased content that prioritizes your interests.

Neural backpropagation is the name given to the phenomenon of an impulse moving backward through a neural circuit. While action potentials usually travel from the cell — beginning specifically at the point of the axon hillock — down the axon to the terminal boutons that form synapses with receiving cells, a backpropagating action potential actually moves backward by the diffusion of incoming ions, causing voltage-gated ion channels to open up the axon instead of down it. Usually, neural backpropagation has a short range of effect, but it has the potential to travel through an entire neural circuit.

An action potential in a neuron is initiated at the axon hillock, which lies where the axon meets the soma of a neural cell. Most neurons have one single axon that can bifurcate many times. This neurite is the process that sends signals from the cell, while dendrites, which are the other neurites on a neuron, are commonly processes that receive signals. Neural backpropagation is regulated by ion channels in the axon and on the cell body.

An axon functions in its role of conducting action potentials from the axon hillock to the end points of the axon, called terminal boutons, by opening channels in the axonal membrane that allow positively charged ions into the cell, depolarizing it and causing voltage-gated channels to open. Voltage-gated channels allow further positively charged ions into the cell, like calcium and potassium. When a cell loses its resting potential of -70mV and becomes depolarized due to the positive charges of the incoming ions, it "fires" and releases neurotransmitter-filled vesicles from terminal boutons at the end of an axon.

Signal propagation functions as ion channels along an axon cause other nearby channels to open, but this signal propagation can move in the reverse direction and when it does, it is referred to as neural backpropagation. This process occurs when an action potential is initiated at the axon hillock and, while it might proceed down the axon as usual, it also conducts a signal in the opposite direction, causing the cell body to depolarize, including synapses and nearby dendrite segments. When a dendritic segment is depolarized, the post-synaptic densities located within that region respond differently to incoming signals from other neurons. Some possible consequences of neural backpropagation include phenomena like dendro-dendritic inhibition and a membrane potential modification, which can change cellular firing properties.

Synaptic plasticity like long-term potentiation (LTP) and long-term depression (LTD) are associated with neural backpropagation because a back-propagating signal modifies incoming signals. While the concept might seem elementary, the notion of changing future behavior based on past experience is a possible definition of learning. In a way, therefore, neural backpropagation might be said to allow individual cells to "learn" on a molecular level. Neural backpropagation is often seen in the neocortex, hippocampus and other brain regions often associated with memory, learning or a high degree of neural plasticity.

All The Science is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.
Discussion Comments
All The Science, in your inbox

Our latest articles, guides, and more, delivered daily.

All The Science, in your inbox

Our latest articles, guides, and more, delivered daily.