We are independent & ad-supported. We may earn a commission for purchases made through our links.
Advertiser Disclosure
Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.
How We Make Money
We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently of our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.

What Is Silica Fume?

By E.A. Sanker
Updated May 21, 2024
Our promise to you
All The Science is dedicated to creating trustworthy, high-quality content that always prioritizes transparency, integrity, and inclusivity above all else. Our ensure that our content creation and review process includes rigorous fact-checking, evidence-based, and continual updates to ensure accuracy and reliability.

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

Editorial Standards

At All The Science, we are committed to creating content that you can trust. Our editorial process is designed to ensure that every piece of content we publish is accurate, reliable, and informative.

Our team of experienced writers and editors follows a strict set of guidelines to ensure the highest quality content. We conduct thorough research, fact-check all information, and rely on credible sources to back up our claims. Our content is reviewed by subject-matter experts to ensure accuracy and clarity.

We believe in transparency and maintain editorial independence from our advertisers. Our team does not receive direct compensation from advertisers, allowing us to create unbiased content that prioritizes your interests.

Silica fume is a substance that is used to improve the strength of concrete. It is produced during the synthesis of silicon metal or ferrosilicon alloys, when the reduction of high-purity quartz at high temperature in an electric furnace gives off silicon oxide gas. The gas reacts with oxygen and condenses into silica fume, a fine white powder substance composed mostly of silicon dioxide. This substance is not to be confused with fumed silica, also known as pyrogenic silica, which has a different composition and is used to thicken milkshakes and paints.

Like other pozzolanic materials, silica fume reacts with calcium hydroxide to create strong bonds within the cement mixture. The addition of this substance to concrete decreases the water content of the concrete and makes it less susceptible to corrosion caused by marine salts and chloride ions. This makes it especially useful in structures exposed to water, such as dams or bridges.

It has been shown that the addition of silica fume to a concrete mixture reduces the level of expansion and cracking resulting from alkali-silica reactions (ASR). ASR typically occurs when hydroxide ions react with silica in a cement mixture to form a calcium and alkali silicate gel, which flows into porous spaces in the concrete. The gel causes expansion and cracking, leading to eventual structural failure.

The extremely fine particulate texture of silica fume gives it advantageous mechanical properties. Silica concrete is less permeable than non-reinforced concrete and can be used to support heavy loads. Skyscrapers and other large buildings that put large amounts of vertical pressure on their structural elements usually use high-strength concrete.

Silica concrete is mixed by adding a specified proportion of fume to cement in either wet or dry form. The proportion of silica fume in the final concrete mixture is determined by the level of material strength required. Stronger mixtures of silica concrete, which might contain as much as 15 percent of silica fume by weight, are more brittle than the more common mixtures, which contain 7-10 percent.

Until about the mid-1970s, the substance produced in quartz reactions was not conserved for use but was instead released into the atmosphere. This practice created environmental concerns that led to landfilling of the substance. Guidelines have since been developed to standardize physical quality, packaging and other qualities for industrial use.

All The Science is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.
Discussion Comments
All The Science, in your inbox

Our latest articles, guides, and more, delivered daily.

All The Science, in your inbox

Our latest articles, guides, and more, delivered daily.