We are independent & ad-supported. We may earn a commission for purchases made through our links.
Advertiser Disclosure
Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.
How We Make Money
We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently of our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.

What is Solar Radiation?

By James Doehring
Updated May 21, 2024
Our promise to you
All The Science is dedicated to creating trustworthy, high-quality content that always prioritizes transparency, integrity, and inclusivity above all else. Our ensure that our content creation and review process includes rigorous fact-checking, evidence-based, and continual updates to ensure accuracy and reliability.

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

Editorial Standards

At All The Science, we are committed to creating content that you can trust. Our editorial process is designed to ensure that every piece of content we publish is accurate, reliable, and informative.

Our team of experienced writers and editors follows a strict set of guidelines to ensure the highest quality content. We conduct thorough research, fact-check all information, and rely on credible sources to back up our claims. Our content is reviewed by subject-matter experts to ensure accuracy and clarity.

We believe in transparency and maintain editorial independence from our advertisers. Our team does not receive direct compensation from advertisers, allowing us to create unbiased content that prioritizes your interests.

Solar radiation is the full spectrum of light given off by the sun. It includes visible light and all other frequencies of radiation on the electromagnetic spectrum. Compared to familiar energy sources on Earth, the sun emits a tremendous amount of energy into space. The type of radiation given off by the sun is a product of its high temperature, which is caused by nuclear fusion inside the sun’s core. Solar radiation is studied by scientists for its effects on phenomena on Earth, such as weather, and for the science of astronomy.

The sun was formed about 4.5 billion years ago when a cloud of gas collapsed upon itself. Gravity caused the large amount of matter, which was primarily hydrogen, to pull itself together tightly; a very high pressure resulted in the sun’s core. This pressure became so great that hydrogen atoms began to fuse together, a process that releases much heat energy. The temperature of any collection of matter, including the sun, is what gives rise to emitted radiation.

Only a small fraction of solar radiation ever reaches Earth; the majority is radiated into empty space. Even the fraction that does reach Earth, however, is much larger than the amount of energy that is consumed on Earth by sources such as fossil fuels. The average power consumed by humans during 2008 was about 1.5 x 1013 watts. By comparison, the average power than reaches Earth via sunlight is more than 10,000 times larger. The tremendous amount of power radiated by the sun can be attributed to its large mass and high temperature.

Sunlight is measured in different ways. One instrument that measures sunlight from a full 180 degree field of view is called a pyranometer. A pyrheliometer is a device that is pointed directly at the sun for radiation measurements. Solar radiation is measured in a quantity called irradiance, which has standard units of watts per square meter. The average solar irradiance at the Earth’s distance from the sun is about 1,366 watts per square meter.

Measurements of solar radiation tend to fluctuate somewhat over time. Part of the reason for this fluctuation is that Earth’s orbit is not perfectly circular, and Earth-based observers are constantly changing their distance from the sun. Actual variations in solar radiation also give rise to fluctuations in measurements, but these amounts are usually small. Some of these variations have been observed to follow an 11-year cycle. Periodic fluctuations like these have been measured to affect levels of solar irradiance by 0.1%

All The Science is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.
Discussion Comments
By Amphibious54 — On May 30, 2011

How do I find a solar radiation map for where I live? I have to do a project for one of my science classes to determine if it would be cost effective to situate a large solar array at my school. I need to know if there is enough solar radiation to make the project cost effective.

By Glasshouse — On May 27, 2011

@submariner- Stated simply, solar declination is the angle that the North Pole tips toward or away from the sun (Tilt of the earth's north and south axis). This is essentially the seasonal solar effect. The declination of the earth on the summer solstice is 23.45 degrees and during the winter solstice, it is -23.45 degrees. To find the declination for any given day you can use the following equation: 23.45 x sin[360/365(n+284)] where n is the day of the year.

Declination is important because it will tell you what angle solar panels should be set at during different times of the year. Panels should be set at the latitude of the location when solar radiation falls on earth at a perpendicular angle (zero degrees declination). The angle should be higher than the latitude in the winter and lower than the latitude in the summer. The panels should face south in the northern hemisphere, and north in the southern hemisphere.

By submariner — On May 26, 2011

What does declination have to do with incoming solar radiation? I am studying for a training course that will allow me to work in solar installation. I do not quite understand how the two interact and would love it if someone could give me a simple, straightforward explanation of what this term means. Thanks wisegeeks!

All The Science, in your inbox

Our latest articles, guides, and more, delivered daily.

All The Science, in your inbox

Our latest articles, guides, and more, delivered daily.