We are independent & ad-supported. We may earn a commission for purchases made through our links.
Advertiser Disclosure
Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.
How We Make Money
We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently of our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.

What Is Static Equilibrium?

By E.A. Sanker
Updated May 21, 2024
Our promise to you
All The Science is dedicated to creating trustworthy, high-quality content that always prioritizes transparency, integrity, and inclusivity above all else. Our ensure that our content creation and review process includes rigorous fact-checking, evidence-based, and continual updates to ensure accuracy and reliability.

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

Editorial Standards

At All The Science, we are committed to creating content that you can trust. Our editorial process is designed to ensure that every piece of content we publish is accurate, reliable, and informative.

Our team of experienced writers and editors follows a strict set of guidelines to ensure the highest quality content. We conduct thorough research, fact-check all information, and rely on credible sources to back up our claims. Our content is reviewed by subject-matter experts to ensure accuracy and clarity.

We believe in transparency and maintain editorial independence from our advertisers. Our team does not receive direct compensation from advertisers, allowing us to create unbiased content that prioritizes your interests.

Static equilibrium is a term used in physics to describe a situation in which the total forces acting on an object at rest add up to zero. In other words, the forces pulling the object in different directions balance out, causing the object to remain motionless. For an object to be in static equilibrium, it must also be in translational equilibrium and in rotational equilibrium, meaning that the external forces and external torques acting on the object must sum up to exactly zero.

In physics, forces of movement are often described in terms of vectors. A vector is an abstract mathematical concept used to represent both the direction and magnitude of a force. If a crate were being pulled a certain distance to the left, for example, the vector would indicate both the direction of the force and the distance the crate was pulled.

Newton’s first law of motion states that an object will remain at a constant velocity if the sum of vector forces on that object is zero. Objects at rest will stay at rest unless acted upon by a force, and objects in motion will, likewise, stay at the same velocity unless acted upon. The vector sum is also called the resultant force, or net force.

In a case of static equilibrium, forces are acting on an object, but the vector sum of all forces acting on that object is zero. This means that opposing vectors cancel each other out exactly, resulting in zero net force on the object. Although forces are present, the object remains motionless. To continue the example given above, if the crate were being pulled both left and right simultaneously with exactly the same amount of force and exactly opposing torque, all vectors would be opposed exactly to each other and the crate would not move. It would be in static equilibrium.

When the external forces acting on an object cancel each other out, the object is said to be in translational equilibrium, the first condition necessary for static equilibrium. The second condition is rotational equilibrium. In rotational equilibrium, the net torque, or rotational force, acting on the object must be zero. If, for example, the crate is being pulled left and right but is also being twisted around an axis, it would not be in static equilibrium, because torque would cause it to move. An equal and opposite force of torque would be required to set the crate in rotational equilibrium.

All The Science is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.
Discussion Comments
By David09 — On Aug 09, 2011

@Charred - Yeah, a lot of physical objects function in static equilibrium. Basically, if it’s not flying off your desk or moving one way or another, you can argue that it’s in a state of equilibrium. A simple picture hanging on the wall would be an example.

I vaguely recall static equilibrium from my physics course in college. All I remember is that I needed to use a lot of trigonometry, because when calculating forces acting on an object, there was a horizontal component and a vertical component to each force.

I needed to use sines, cosines and tangents in some situations, but I don’t recall the exact formulas themselves.

By Charred — On Aug 08, 2011

@nony - I had to help my daughter with her 12th grade physics this year so I think I can weigh in, although I am by no means an expert.

The static equilibrium definition is neither good nor bad. As a matter of fact, one example of static equilibrium is your chair at rest.

While gravity is pulling the chair down, physicists describe something called normal force acting “up” against the chair which is balancing it out. I remember this example from one of my daughter’s static equilibrium problems.

Now surely you can’t argue that the static equilibrium in this case is bad in any sense of the term. If it weren’t for the normal force, the chair would keep going down; if it weren’t for gravity, well obviously you’d have a flying chair.

A dynamic equilibrium example would be a bicycle in balance riding at a steady speed.

By nony — On Aug 08, 2011

@allenJo - Is static equilibrium good or bad? I ask because, as with the job example you gave, the term has somewhat of a negative connotation.

I do agree that people talk about being in a state of equilibrium as being a bad thing. I don’t know myself; I tend to think that it’s neutral, depending on the context.

Maybe static and dynamic equilibrium are what people are thinking about; static is bad, dynamic is good.

By allenJo — On Aug 07, 2011

While I didn’t exactly enjoy physics in high school, I can’t deny the fact that it was one of the most relevant science classes I ever took. So much of what you learn about in physics applies to everyday life.

It deals with motion, gravity, momentum, inertia – and here, static equilibrium. Now if you’ve ever played a game of tug-of-war, and you played against a team that was equal and opposite you in strength, you’ve experienced static equilibrium.

If neither of you could move the rope past the center line (effectively a tie) then you were in such an equilibrium state.

I think that static equilibrium examples can be found in other contexts besides tug-of-war however. For example, if you’re at your job, trying hard to get ahead, but there are counteracting forces keeping you down, then you are in equilibrium. You may start wondering if it’s time to move on.

All The Science, in your inbox

Our latest articles, guides, and more, delivered daily.

All The Science, in your inbox

Our latest articles, guides, and more, delivered daily.