We are independent & ad-supported. We may earn a commission for purchases made through our links.
Advertiser Disclosure
Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.
How We Make Money
We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently of our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.
Biology

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

What Is Stem Cell Differentiation?

Mary McMahon
By
Updated: May 21, 2024
Views: 17,284
References
Share

Stem cell differentiation is a process where an unspecialized stem cell develops into a particular type of tissue, like a mature red blood cell. This occurs at all stages of life, from very early embryonic development into adulthood, as the body needs a constant supply of new specialized cells to function. Several factors are involved in cellular differentiation, including environmental and biological triggers for various cell types.

The number of different kinds of cells a stem cell can mature into are reflected by its potency. A totipotent cell can develop into any kind of cell at maturity. Such cells are found in the early blastocyst phases of embryonic development, when every cell needs to be able to give rise to a variety of cells for an embryo to develop. As embryonic development progresses, the stem cells become pluripotent in nature, with the ability to diverge into a variety of cell types, but not all.

Multipotent stem cells can differentiate into several related cell types. For example, hematopoietic cells that give rise to different kinds of blood cells can undergo stem cell differentiation to turn into white or red blood cells. They cannot, however, turn into stomach lining or neurons. Multipotent cells of this nature are commonly found in adult organisms to supply continual fresh cells to replace worn and damaged older cells.

In stem cell differentiation, a stem cell receives a signal to start maturing. The cell may pass through several life stages before it becomes a mature cell. At any stage, an error can occur, and the cell may become misshapen or can develop other problems. The immune system remains watchful for such cells so it can intervene to destroy them and recycle their components before they have an opportunity to fully develop and cause problems. The body constantly needs new blood and skin cells, among others, and relies on stem cell differentiation to meet this need.

Scientific researchers have a particular interest in embryonic stem cell differentiation because of their totipotent and pluripotent properties. They study embryonic development to learn more about how cells mature and the order in which various structures occur as an embryo develops. This can provide important information about birth defects, as well as the biological history of an organism. Many organisms display parallel embryonic development until a certain stage, where they start to look radically different, just like fully mature specimens of different species. These similarities in development can hint at the evolutionary history of various organisms.

Share
All The Science is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.
Link to Sources
Mary McMahon
By Mary McMahon

Ever since she began contributing to the site several years ago, Mary has embraced the exciting challenge of being a All The Science researcher and writer. Mary has a liberal arts degree from Goddard College and spends her free time reading, cooking, and exploring the great outdoors.

Discussion Comments
Mary McMahon
Mary McMahon

Ever since she began contributing to the site several years ago, Mary has embraced the exciting challenge of being a...

Learn more
Share
https://www.allthescience.org/what-is-stem-cell-differentiation.htm
Copy this link
All The Science, in your inbox

Our latest articles, guides, and more, delivered daily.

All The Science, in your inbox

Our latest articles, guides, and more, delivered daily.