We are independent & ad-supported. We may earn a commission for purchases made through our links.
Advertiser Disclosure
Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.
How We Make Money
We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently of our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.

What Is the Solar Constant?

By Ray Hawk
Updated May 21, 2024
Our promise to you
All The Science is dedicated to creating trustworthy, high-quality content that always prioritizes transparency, integrity, and inclusivity above all else. Our ensure that our content creation and review process includes rigorous fact-checking, evidence-based, and continual updates to ensure accuracy and reliability.

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

Editorial Standards

At All The Science, we are committed to creating content that you can trust. Our editorial process is designed to ensure that every piece of content we publish is accurate, reliable, and informative.

Our team of experienced writers and editors follows a strict set of guidelines to ensure the highest quality content. We conduct thorough research, fact-check all information, and rely on credible sources to back up our claims. Our content is reviewed by subject-matter experts to ensure accuracy and clarity.

We believe in transparency and maintain editorial independence from our advertisers. Our team does not receive direct compensation from advertisers, allowing us to create unbiased content that prioritizes your interests.

The solar constant is a measure of the power of a square meter of sunlight directly impacting on a perpendicular plane of space above the atmosphere of the Earth, and is considered to be a uniform value of 1,370 watts per square meter. This changes dramatically, however, at the surface of the Earth, as sunlight has to pass through varying layers of atmosphere depending on latitude and sea level as well as atmospheric conditions. Therefore, the solar constant is largely a reference number used off of which to base actual sunlight values received, and is instrumental in such areas as the placement of solar arrays for photovoltaic or solar furnace power generation, and in weather and agricultural calculations. As a pure value above the limits of the atmosphere, the solar constant also varies by 3% depending on the point at which the Earth is in its orbit of the Sun, since the orbit is slightly elliptical.

While solar radiation values for the solar constant usually focus on visible light, the values are a calculation of all solar electromagnetic radiation received. This includes infrared light, X-rays, and radio waves that are transmitted by the Sun, though high frequency waves like X-rays make up less than 1% of the total energy emitted. Where sunlight has reached the Earth's surface, this radiation is referred to as insolation, and has an optimal level of around 1,000 watts per square meter. Practical values due to higher latitudes, varying elevations, overcast skies, and other causes for indirect light drop this value to 250 watts per square meter, reducing the actual solar energy level that the Earth receives in space by a factor of more than five once it reaches the surface.

The solar constant is an important value to know in the field of satellite and space probe development. This is due to the fact that these systems often have solar panels for generating power, and that they can be damaged by some solar radiation if not properly shielded. Research into solar cycles for the Sun, involving the calculation of solar storms and sunspot activity, are also dependent on the solar constant and its level of flux density or the relative amount of solar power transmitted per square meter. The Sun itself is known to have a slight variability to its radiation levels over 11-year cycles of ±0.2%. This along with a 10% increase in the solar constant every 10,000,000,000 years can have dramatic impacts on Earth's climate in regional areas such as the sea or on a global basis over time.

Manned space exploration to locations such as the Earth's Moon or the planet Mars also have to take into account the solar constant for these regions. Solar energy is largely similar to the pure value for Earth when on the Moon's surface, due to the same relative distance from the Sun and the fact that the Moon has no atmosphere. Mars, however, will have a different solar constant due to it being at any one time at least 30,000,000 miles (48,280,320 kilometers) farther from the Sun than the Earth, and because it has its own weak atmosphere. In space or on barren planets and asteroids, the solar constant is the primary indicator of how much energy is available for processing rocks into useful materials such as oxygen and hydrogen, or for generating electrical power to sustain artificial environmental systems and communications equipment.

All The Science is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.
Discussion Comments
All The Science, in your inbox

Our latest articles, guides, and more, delivered daily.

All The Science, in your inbox

Our latest articles, guides, and more, delivered daily.