We are independent & ad-supported. We may earn a commission for purchases made through our links.
Advertiser Disclosure
Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.
How We Make Money
We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently of our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.

What is Thermodynamic Engineering?

By D.R. Satori
Updated May 21, 2024
Our promise to you
All The Science is dedicated to creating trustworthy, high-quality content that always prioritizes transparency, integrity, and inclusivity above all else. Our ensure that our content creation and review process includes rigorous fact-checking, evidence-based, and continual updates to ensure accuracy and reliability.

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

Editorial Standards

At All The Science, we are committed to creating content that you can trust. Our editorial process is designed to ensure that every piece of content we publish is accurate, reliable, and informative.

Our team of experienced writers and editors follows a strict set of guidelines to ensure the highest quality content. We conduct thorough research, fact-check all information, and rely on credible sources to back up our claims. Our content is reviewed by subject-matter experts to ensure accuracy and clarity.

We believe in transparency and maintain editorial independence from our advertisers. Our team does not receive direct compensation from advertisers, allowing us to create unbiased content that prioritizes your interests.

Thermodynamic engineering is the application of thermodynamic principles to engineering design problems. Universities have thermodynamic specialty areas within mechanical engineering departments in their colleges of engineering. Thermodynamic engineering can refer to industrial thermodynamic applications within the field of mechanical engineering, also referred to as thermodynamic process engineering.

Thermodynamics makes use of highly defined rules to model natural and experimental energy events. The laws of thermodynamics state the following: the definition of temperature and heat flow, that energy cannot be created or destroyed, that small amounts of the original energy of a system are always lost from one state to the next, and that for temperature to drop, there must be an adequate amount of heat energy lost. Techniques developed in the science of thermodynamics help engineers account for pressure, volume, and temperature changes in any number of applications and fields of study.

College coursework in engineering thermodynamics is usually part of a graduate program within the mechanical engineering major that leads to a masters or doctoral degree. Undergraduate courses such as fluid mechanics, thermodynamic systems, and internal combustion engines lead to more complex studies. Graduate coursework may consist of applied mathematics, statistical and equilibrium thermodynamics, gas dynamics, fluid dynamics, energy conversion, energy dynamics, and combustion.

Thermodynamic engineering industries design, test, and develop products that require constraints on pressure, temperature, and volume. Aeronautical companies are concerned with the application of thermodynamic principles to the design and construction of rocket systems. Air pollution control, thermal processing, and power equipment companies apply thermodynamic engineering principles in the design and testing of incinerators, scrubbers, filters, kilns, dryers, furnaces, and boilers. Other thermodynamic engineering firms design and manufacture test fixtures, such as environmental chambers with ovens and refrigerators for testing the heat tolerance of materials, and thermocouples for readout and feedback of changing test temperatures.

Traditional power industries, such as coal-fired and atomic energy plants, apply thermodynamic principles on a large scale. The green revolution that encourages alternative and clean energy sources, such as passive solar, active solar, water, wind and electricity, require thermodynamic engineering skills to calculate energy balances in exchange systems for heating, cooling, and running electrical grids for both housing and industry. Chemical thermodynamic engineering takes account of systems that experience change of state in fields as diverse as steelmaking and the production of nano-sized particles in the design of intelligent materials.

All The Science is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.
Discussion Comments
By Horsies — On May 13, 2011

@GoSteelers -

Thanks for the tip! I wish our policy makers would become more knowledgeable about subjects like this. I believe using thermodynamics efficiently and effectively on energy sources and creating competition in this realm is the key to our future on this planet. Burning coal goes against the efficient laws of thermodynamics. Only a third of the coal's energy becomes electricity and the rest is lost energy. Policy needs to be shaped around sustainable solutions before it is too late!

By GoSteelers — On May 11, 2011

If you are interested in learning more about this, there is a great book by Michael Moran and Howard Shapiro called, "Fundamentals of Engineering Thermodynamics." It is a textbook so it is big and a bit expensive, but quite a pleasant read. Even if you are not an engineering person, it is still easy to understand and the authors use lots of examples to help the reader along. This is an important subject to be familiar with if you are at all concerned about our energy future. Almost all of the green energy solutions scientists and engineers have come up with so far stem from thermodynamics.

All The Science, in your inbox

Our latest articles, guides, and more, delivered daily.

All The Science, in your inbox

Our latest articles, guides, and more, delivered daily.